Rej = wja/v is the Reynolds number for jet;

Wj is the jet velocity at slot;
v is the kinematic for bed viscosity;
0 is the slot width,
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LAWS GOVERNING GAS-BUBBLE MOTION IN
A FLUIDIZED BED

Yu. S. Teplitskii and A, I. Tamarin UDC 532,546

Laws governing the motion of particles and gas bubbles in a nonuniform fluidized bed are analyzed
on the basis of a variational method for describing the hydrodynamics of a fluidized bed [1] using
functions of the potential motion of phases around an individual bubble [2]. Theoretical results
are compared with existing experimental data [6-17].

The efficiency of technical processes taking place in a fluidized bed is determined to a considerable ex-
tent by the nature of gas-bubble motion.

A large amount of experimental material has been accumulated on the laws governing the motion of indi-
vidual bubbles artificially injected into a fluidized bed at filtration rates close to the rate for initiation of fluidi-
zation [3]. Relations were established which determined the velocity and size of such bubbles. Potential func-
tions were also obtained which described the motion of phases in the neighborhood of a rising gas bubble [2, 4,
5]. '

There is a large amount of data on the motion of bubbles in a fluidized bed at fluidization numbers greater
than one [6-17]. The results of the various investigators are contradictory; the laws governing the motion of
bubbles are not clear and there are no sufficiently justified theoretical models which would make it possible to
obtain quantitative laws governing the motion of the bubbles.

It was shown [1] that one can obtain a representation of the averaged velocity and phase cbncentration
fields in a nonuniform fluidized bed by using a variational formulation of the motion of a two-phase system.

We consider the following simplified model of a system. We confine ourselves to the two-dimensional
case. In accordance with the concepts of the simplest two-phase theory [3], we consider a fluidized bed con-
sisting of an emulsion phase, in which the particle concentration is constant and equal to E(, and ascending gas
bubbles. We arbitrarily divide the bed into cells, each of which consists of a bubble with a following hydro-
dynamic wake and surrounding emulsion phase. The size of the cell and the radius of the bubble will increase
during motion from below upwards. The rate of bubble rise will increase correspondingly. We introduce the
quantity n — the number of bubbles at a distance h vertically above the gas-distribution grid.

The velocity fields of the gas and particles, and also the static pressure field outside the bubble and its
hydrodynamic wake, are described by known functions [2] which in a fixed coordinate system with an origin
coinciding with the center of a rising bubble at a given time are of the form

a) velocity of solid phase:

A. V. Lykov Institute of Heat and Mass Transfer, Academy of Sciences of the Belorussian SSR, Minsk.
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D} Dy .
w, = wy— kylly [ 14 i _’; PR ], 1

_ klubD?,xy . @)
Y _2(xz—t—y2)2’
b) velocity of fluidizing agent
, Dy (1 + v, /Ry 2x2 . 3
oo b [ 1+ P 1 2
_ Di(vo, + ki) xy.
KO T @
c) static pressure
Dbx i
P=Pb—(F1—1)[X—W]' (5
For the region of the hydrodynamic wake of the bubble, we assume
a) velocity of solid phase
w,=u,; w,=0; (6)
b) velocity of gas
Uy =100, +uy; v, =0; (N
c) static pressure
dap dp :
L =1—F,, £=0. 8
3 ¥ 3y (8)

We introduce the quantity u¥ = kyuy in place of uy, in Eqgs. (1)-(4). This circumstance reflects the well-
known experimental fact that particle motion in a fluidized bed is circulatory; the sinking motion of solid par-
ticles relative to the walls of the apparatus in the space between bubbles is balanced by the rising motion of the
material in the hydrodynamic wakes of the bubbles. In Eqgs. (5) and (8), note that1 — Fyand 1 — F, are aver-
aged drops in static pressure along the vertical for the corresponding regions, We assume the gas pressure
within the bubble (py,) is constant.

We write the functional of [1] for this cellular model, having modified it somewhat:

=1
= (\ Sln“ug [ —Eu(l —E) -?’-vf’ —Eu Eoiw? + 1 E,w, +
o Xi
L

ox; Fr
b RPN ¥
+ Eu—g% v, + Eow;J w; i %] + Ki (EO)(Ul w?)(vi — ;) + B, w; (:i: T %w;_ug )] dSdt, (9

the minus sign for Bwf/at refers to the time derivative of the descending circulatory component of wy from
Eq. (1), which is (1 — Kkj)up since dt = —dh/ub for this derivative, All quantltles are dimensionless in Egs, (1)~
(9) and in the following, and primes are omitted for convenience.

By considering the form of the functional (9) and the condition for retention of particles in the system, it
is easy to show that L is the power the gas expends during filtration through the bed,

We substitute the system of trial functions (1)-(8) into Eq. (9).

After integration over the cell volume, we obtain

p—

L= §n°u2 [Eu(l — Ep) (F,— 1)[ 03, +(1 — kyul]-- Eu E, (F,—1) x

l
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X (I —ky) up 4 Eo (1 — k) u, — Eu(F) — Dlvo, — (1 — k) uy) +
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+ Kf (Eq) vg, vo, — (1 — k)2 Eyu, iy (0 — Dp)dt -

-

p—1

- y n%up {Eu (1 — E)(F, — 1) [v9, — kgl + Eu Eg (Fy— 1) k) —

— Eu (F} — 1)(vo, + k) = KF (Eq) 05,00, +

dug}

p—1 .
= K Eouy —2 %D?,[ 1_(%) ]dt+ j noup [Eu(l—Eo) (F,— 1)x
0

x (03, +4f) + Eu B (Fy— 1)ug = é Eqtty — Ett (FS — 1) (vo, -+ ug) -

Didt. (10)

du?
+ Kf (B v,v,, + Eyup —= ] =2

d | 41-a
By varying L in the form (10) over v, Vo, and up, we obtain the following relations (after variation,
quantities with and without the superscript 0 are equated to one another [1)):
Eu(F, — 1) = Kf (Eg) v, (11)
(variation over v°1) s
Eu(F, — 1) = Kf (E,) vo, (12)

(variation over Voz) ’

[—‘ E,—Eu(F,— 1) — (1 — k) E, ](1—kl>1(b2—0§)-:—
Fr 4
dll at 0 ’D 2
+ | —EuF,— 1)+ E; b gDl 1 — (22 =0 1
[ u(F,— 1) “dt]wb[ (‘b” (13)
(variation over up — continuous phase),
B, —Eu(F,—1) - B, St =0 (14)

(variation over up = region of bubble wake); Eqs. (11) and (12) represent equations of balance for gas momen-
tum in the corresponding regions in terms of the trial functions (1)-(8). Equations (13) and (14) are the anal-
ogous form of the sum of the equations of balance for the momenta of solid particles and gas.

A logical consequence of two-phase theory is the following equality,

p—1 p—1
nity Eu (1 —Eo) (F, — 1)vo, % (& —D3)df + S‘nubEu(l—Eo) x
0 . 0
n ] 'Db 2 \ ~ .
X (Fy— 1o, D} 1—(7 dt = | nu, Eu(l — Ep) (Fy— 1) >
/ )
=1
XUoiDﬁ“L df = ‘31 niy Eu(l — Eo) (F — 1) v, T ’ b2 — Dy : dt = Ly, (15)
* 4 ]*X"]- T( bl+a o

\

since in accordance with this theory, the relative velocity of the phases remains on the average equal to v, as
it was at the beginning of fluidization; L, is the power which the gas expends during filtration through the bed at
the beginning of fluidization,

Using Egs. (11)-(14) and Eq. (15), the functional (10) takes the form:

(]
-3
[3%]



p—1
L=I,+ y nity But (F, — 1) (1 —kl)ub—z—(bz—D%) dt +
[1]

~ -~

Pt
+ f ity Eu (Fy — 1) byt TDb[l——([; ) ]dt—[— f iy Bu (Fy— 1) 4y - - —2- Diat. (16)
0 0

l+a

Substituing in Eq. (16) the expressions for F; — 1 and ¥, — 1 from Egs. (13) and (14), we obtain

p—l
n

L= nub{ (1 — k) (82— Di)—~E —(1—k) (*—D2) E, x

o
0

diy 2 D du du
gt [1—[2)]E )2 4 ity | Ey—— up + Equ, 2 | %
th+"’[ (b)]"dt},;”b‘*f"b[ Fr b+°bdt]4l+

At the beginning of fluidization (u = ug)k; = 1 and Dp = 0, and the natural conclusion L = L, follows from
Eq. 7).

The physical meaning of Eq.(17) is the following: The excess power of the gas (L — L) is expended in
acceleration of the particles and in an increase of their potential energy in the gravitational field thhm the
hydrodynamlc wakes of the bubbles, and in acceleration of the apparent mass of a bubble (pplﬁE (1r/4)Db[1 (Db/
b)?]). The latter results from acceleration of particles around a bubble because of the increase in its velocity.
In the continuous phase, there additionally occurs conversion of the potential energy of the particles and of the
kinetic energy of their descending circulatory motion into potential energy of the gas.

D} dt. {17)

Using the equality

- -

p—1 p—1t

1 n 2 1 b4
5‘ nub[ﬁ— E, (1 ——kl)ub]T (b — Dy ) dt + S\ nubFr— Eoub—:{
0 0

2
L dt =0,
e b (18)

which reflects the equality of the circulatory flows in the system, we obtain from Eq. (17)

-t 51 :
o du n . 2 . du 14 D 2
L=L,+ j nub[ (2 — k) (b — 1) Egt —d.i—”]f(b--—Di)dt-}_ § ity k2 Bl E";Dﬁ[l—(—b—‘?) ]dt. (19)
[ .

0

Assuming

.
L= 5 ity B (Fyy— 1) - 0 (20)
0

where Fay — 1 = Ap/P, and using the equality

| (Fay— 1) b2 = (F 1)( Dy a) @y
we obtain from Eq. (19)
Et (Fay— 1) (4 — tg) = Equy- %0 g2 — ) (by — 1) [1 — Ey (1 + )] + &1 By (1 + @) [1 —E, (1 +a)}}, (22)

where [1/(1+0)](Dy,/b)’ = Ey, is the concentration of bubbles in the system.
In dimensional form, Eq.(22) will be

dt.b

g u—up) =y, p{(2———k1)(k1—l)[l—Eb(1-T-a)]+k, E (1 +a) [t —Eg(1 4+ )i}, ‘ 23)

assuming Ap/H, = pp gE, in Eq. (22).
Relations such as Eq.(18) are obviously valid for each cell so that one can write

(By— 1) [1 —(1 + @) E;] = «E,. (24)
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Fig. 1. Vertical bubble size Dy, cm, as a function of (u—ugh, cm?/
sec: 1-5) [6] (for particles of aluminum, carbon, quartz, glass beads,
and powdered glass, respectively); 6) {9]; 7) [10]); 8, 9) [11] (61 X 61
cm and 122 X 122 em columns, respectively); 10) [12]; 11) [13]; 12) [14]
(rounded particles); 13) [14] (particles of irregular shape); 14) [8]; 15)
[15]; 16) [16] (values calculated from experiments on expansion of bed);
17) [17]; 18) [16] (values calculated from experiments on mass trans-
fer); 19, 20) [7] (sand and silica gel, respectively).

Using Eq.(24), Eq.(23) takes the form

glu—u) =¥ (@E)u, ‘Z;" . (25)

Neglecting terms such as aEy, (¢ Ep)?, and ER(Ep — @) in Yo, Ep) = (2 kilozEb + szb[l + alfl —Ep(l +
a)])p and assuming ky = 1, we obtain the approximate evaluation

¥(a E) = Ep=(p—1), (26)
for ¥(a, Ep), where it was assumed a = 0.2-0.4 [3], Ep = 0.1-0.2, and Ey, constant over the height of the bed.

By considering developed fluidization modes where bed expansion is stabilized, it is possible to consider
the coefficient ¥(a, Ep) independent of (u —ug) and to assume it is a constant: ¥(a, Ep) =C

By expressing the relation between dh and dt, dt = dh/uy,, we obtain from Eq. (25)

up [
5 uj duy, = %g(u—uo) j.dh. @7
0

u—uy

when the remarks made above are taken into consideration. After integration we have

uz[s(”"% )'+3 u—th g J= 3 gu—uph. (28)
U Uy ¢ .

At high filtration rates where the quantity ;3 —1 ig independent of (u — ug, the ratio (u — ug/vh can also be
considered independent of (u — u;). We then obtain from Eq. (28), _
(29)

Uy 22 G [(u — u,) gh) /3.
We use the well-known relation between the relative rate of bubble rise and bubble diameter [3}
v, = k) gD, (30)
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Using Eq. (29), we obtain from Eq.(30)

9
Dy, = 1— [(u — ug)h]?/3.
For comparison of the various published data on gas-bubble sizes, all information about their sizes was
reduced by us to a single quantity — the vertical dimension of a bubble (Dp) assuming a relation between Dy
and Dy, in the form Dy, = Q7Dy [14].

Figure 1 shows data from [6-17] treated in accordance with Eq. (31). As is clear from the figure, all
experimental points are generalized by a straight line with a slope of 2/3 in the selected coordinate system.
The equation for this straight line is

D, =D, + 31—‘?’_— [(u — ) BJ213. (32)
Ve

The relative standard deviation of the experimental points about Eq. (32) is 20% Note that Dy = 0 for all data
except for results from [11] in which gas-bubble sizes were studied in columns with bubble-cap gas distribu-~
tors; in that case, Dy = 4 cm,

Thus, the relation (31) found is well confirmed by numerous experimental data, Equation (32) can be
used for calculating the size of gas bubbles in commercial equipment with a fluidized bed within the following
parameter ranges: 10 = Dk = 180 cm; 0.5 < uy < 8 cm/sec; 40 = (u — uph =< 7000 cm?/sec (D is the diameter
of the equipment).

NOTATION
b is the cell diameter;
Dy, Dy are the diameter and vertical dimension of bubble;
D, is the initial diameter of bubble;
Hy, H are the height of bed at filtration rates u; and u;
h is the above gas-distribution grid;
g is the acceleration of free fall;
k is the coefficient of friction;
HH, =% is the expansion of bed;
Py is the pressure in bubble;
Po» P are the atmospheric and static pressure;
Ap is the pressure drop in bed;
ky, ke, qq, 4 are the dimensionless coefficients;
Se is the cell area;
up, vy are the absolute and relative rates of bubble rise;
u"f) = kiub;
Uy U are the initial rate of fluidization and filtration rate;
Vis Wi are the gas and particle velocities;
vy =uy/(l1 — Ep are the velocity in gaps between particles;
t is the time; '
T, ‘ =H/(u - uo);'
Xy are the coordinates;

Dy/H, =D} ; b/Hy = b', x/H; =

x5 y/Hy =y'; up/lu — up) = up;

vy/(u — ug) =v; u’f)/(u —uy =

u¥ wa = ug) = u's ug/(w— ) = ug

p/Dy = P's Ap/py = Ap'; t/Ty = t' are all dimensionless quantities; -

F-1 =Ap';

Eu= pt)/pp(“ - un)2 is the Euler number;

Fr = (u = up?/gH, is the Froude number;

K= kHD/,op(u — up) is the dimensionless coefficient of friction;

@ is the fractional volume of hydrodynamic wake of bubble (fraction of bubble
volume);

Eq E is the particle concentration in continuous phase at uy and u;

Pp is the particle density.
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OPTIMAL HORIZONTAL PNEUMATIC TRANSPORT

V. V. Kazantsev and M. B. Rivkin UDC 621.867.8

A study has been made of the effects of periodic large-scale pressure perturbations on the pas-
sage of air through a moving bed of granular material in dense-phase horizontal pneumatic

transport.

Experiment shows [1] that horizontal pneumatic transport allows the throughput to be increased by in-
creasing the air speed up to some limit, after which an adverse effect sets in, which cannot be explained in
terms of existing views on the mechanism of motion in high~concentration two-phase mixtures, according to
which the mixing in the lower layer of material (bed) occurs on account of the tangential stresses proportional
to the air speed acting at the phase interface [2]. Also, this model fails to explain the very considerable pres-
sure fluctuations accompanying the motion of the mixture through the pipeline (Fig. 1).

The studies on the structure of high-concentration flows {3] provide the following model for the trans-
port; most of the material is transported in the lower part of the pipeline at a constant porosity m as a
bed whose height and structure vary little along the length [2]. Ridges or dunes travel along the upper sur-
face of thebed [4], and the air flowing over thesegives rise to periodic pressure perturbations, which in-
teract with the air flowing through the bed. This in turn gives rise to an oscillating force within the bed,
which is directed along the line of flow and ftends to accelerate the bed.

As the frequency of ridge passage is a single-valued function of the air speed, we have to examine the
transient~state passage of the air through the bed for a fixed porosity in response to two forces: a constant
pressure gradient and a periodic pressure perturbation at the upper boundary.

The following is [5] the linearized equation for isothermal infiltration:

@P PP, 0P .
P oz ot @

O<x<L, O<z<H, t>0, M=emykp,, P =p2

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 34, No. 3, pp. 417-422, March, 1978. Original
article submitted February 15, 1977.
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